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FILTERING RESPONSES OF SELECTED DISTANCE-DEPENDENT WEIGHT FUNCTIONS’ 
J. J. STEPHENS 

The University of Oklahoma, Norman, Okla .  

ABSTRACT 

The filtering response of the Cressman weight functions and a truncated low-pass filter are presented as functions 
of influence radius. 

1. INTRODUCTION 
An important interim step in the preparation of a 

numerical forecast is the assignment of estimates of 
atmospheric variables to  points of a regular net made 
from observations taken a t  widely-spaced, irregularly- 
distributed reporting stations. A multiple-scan inter- 
polation method with varying influence radii has been 
outlined by Cressman [l]. The present note examines 
the filtering response of the Cressman weight functions 
and of a truncated low-pass filter. The interpretation is 
based upon the similarity between the operations of 
smoothing and filtering. 

2. TWO-DIMENSIONAL FILTER RESPONSES 
Consider the linear smoothing operation 

m 

3 x ,  y)=JJdz’, y’)f(z+z’. Y+Y’)dZ’dY’ (1) 
- m  

where f(s, y) is the total (signal <plus noise) field and 
w(x‘, y’) is the impulsive response, or weight function, 
normalized for unit response at  wave number zero. Also, 
w(z’, y’) must be square-integrable over all (d,  y’) t o  
insure that the operation is one of smoothing. I n  appli- 
cation, equation (1) must be approximated by numerical 
cubature. It is assumed that the data are sufficiently 
dense so that the continuum solution is well estimated by 
bhe discrete analog. 

Whenf(z, y) may be represented by (l), then its spec- 
tral density of variance (or power) P(m, n) is related to 
the corresponding filtered quantity by 

I F(m, n) = 4 n 2 1 ~  (m, n) 12~(m, ?a). (2) 

The quantities m and n represent wave numbers 2 ~ l L ,  
and 2nlL,, respectively. Y(m, n) is the Fourier trans- 
form of w ( d ,  y’) and is termed the transfer function. 

Sasaki [3] has used a square wave-number cell in 
developing a low-pass filter. Petersen and Middleton [2] 
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have concluded that the best basic cell shape in wave- 
number domain for the two-dimensional low-pass filter is 
hexagonal. The cell shape chosen for further examination I 
here is a circular region. 

With the presumption of non-overlapping signal and 
noise spectra, the weight function which filters all noise 
of wave number k(=dm2+n2) greater than some ko has 
a transfer function given by 

I 

(3) 

The weight function corresponding to (3) is a function 
of r(=dx’2+y’2)  only. As shown by Sneddon [4], when 
Y=Y(k) only, then Y(k)  and W ( T )  are inverse Hankel 
transforms of order zero : 

Y(k)  =La w(~)rJ~(kr)dr 
I (4) 

O(T)  = Y (  k )  kJo( Icr)dk. L- 
Here Jo(kr) is a Bessel function of the first kind and 
order zero. 

The weight function corresponding to (3) is 

( 5 )  

where J1(kor) is a Bessel function of the first kind and 
order one. 

As pointed out by Sasaki [3], the nature of the atmos- 
pheric data distribution makes the use of oscillatory 
weight functions somewhat hazardous. Certainly, the 
interval of integration indicated must be finite. In  this 
instance, a weight function wT might be defined as 
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FIGURE 1.-Power transfer function for the truncated low-pass 
filter as a function of (k/&). 

where R is the influence radius. The corresponding 
transfer function is 

( 7 )  

where s=klko. 
Equation (7 )  has been approximated with the trap- 

ezoidal rule using Ay50 .05  and s=0.1[0.1]5. The power 
transfer function, 4n21YT(k)12, is shown in figure 1 for 
various choices of koR. 

Although the cut-off wave number k, is only nominal 
when the influence radius is finite, the secondary lobes of 
the power transfer function a t  high wave numbers have 
amplitudes of less than loe2 and are rapidly damped with 
increasing s. The choice of koR=3.8317 (the first zero of 
oT(ko, r ) )  shows that the major half-lobe of oT is sufficient 
to  reconstitute the longest wavelengths. A choice of the 
second (7.0156) or fourth (13.3237) null points of oT gives 
unacceptable amplification of the shorter wavelengths. 
The third null point (10.1735) would yield reasonable 
short-wave representation, but a t  the expense of longer 
wavelengths. Two intermediate values of koR (5.0 and 
5.5201) are shown to illustrate continuity of the results. 
It would appear that a value of k,R between 5.0 and 5.5 
would yield the best filter. However, because of the 
discrete, random nature of the actual data distribution, 
the inclusion of even a small portion of a negative lobe of 
wT may have effect of marked amplification of short waves. 

The normalized Cressman [ l ]  weight function is 

Now let a real, positive parameter 4 be defined by k,R= 
3.8317. Equation (8)  becomes 

} { 14.682-(k0r>2 
14.682 (h 4-1)  14.682+(ko~’)~ 

0 6 kor 5 3.8317 
, kor>3.8317. 

It might be noted that oc, determined experimentally, is 
nearly coincident with wT truncated a t  k0r=3.8317. 
Their filtering properties are necessarily similar. 

When the weight function is constant, the power 
transfer function is 

Waves whose lengths are comparable to 2R or shorter are 
virtually eliminated. The power in waves of length 10R 
or greater is reproduced to better than 90 percent. 

3. CONCLUSIONS 
The notion of analyzing in scales, sometimes used 

qualitatively with the Cressman weight and varying 
influence radius with successive scans, may be made 
explicit. The specification of R determines a nominal 
k,  and the spectral density modification. The total effect 
of repeated scans with variable influence radii may also 
be inferred for R large enough to insure a large data 
sample since the associated power transfer functions are 
multiplicative. Although the constant weight function 
sharply filters short waves for an information continuum, 
limited data samples for small R may have the opposite 
response. Lack of information corresponds to zero 
weighting, and with arbitrary data spacing almost any 
response may be generated. 
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